If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3d2 + 7d + 3 = 0 Reorder the terms: 3 + 7d + 3d2 = 0 Solving 3 + 7d + 3d2 = 0 Solving for variable 'd'. Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 1 + 2.333333333d + d2 = 0 Move the constant term to the right: Add '-1' to each side of the equation. 1 + 2.333333333d + -1 + d2 = 0 + -1 Reorder the terms: 1 + -1 + 2.333333333d + d2 = 0 + -1 Combine like terms: 1 + -1 = 0 0 + 2.333333333d + d2 = 0 + -1 2.333333333d + d2 = 0 + -1 Combine like terms: 0 + -1 = -1 2.333333333d + d2 = -1 The d term is 2.333333333d. Take half its coefficient (1.166666667). Square it (1.361111112) and add it to both sides. Add '1.361111112' to each side of the equation. 2.333333333d + 1.361111112 + d2 = -1 + 1.361111112 Reorder the terms: 1.361111112 + 2.333333333d + d2 = -1 + 1.361111112 Combine like terms: -1 + 1.361111112 = 0.361111112 1.361111112 + 2.333333333d + d2 = 0.361111112 Factor a perfect square on the left side: (d + 1.166666667)(d + 1.166666667) = 0.361111112 Calculate the square root of the right side: 0.600925213 Break this problem into two subproblems by setting (d + 1.166666667) equal to 0.600925213 and -0.600925213.Subproblem 1
d + 1.166666667 = 0.600925213 Simplifying d + 1.166666667 = 0.600925213 Reorder the terms: 1.166666667 + d = 0.600925213 Solving 1.166666667 + d = 0.600925213 Solving for variable 'd'. Move all terms containing d to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + d = 0.600925213 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + d = 0.600925213 + -1.166666667 d = 0.600925213 + -1.166666667 Combine like terms: 0.600925213 + -1.166666667 = -0.565741454 d = -0.565741454 Simplifying d = -0.565741454Subproblem 2
d + 1.166666667 = -0.600925213 Simplifying d + 1.166666667 = -0.600925213 Reorder the terms: 1.166666667 + d = -0.600925213 Solving 1.166666667 + d = -0.600925213 Solving for variable 'd'. Move all terms containing d to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + d = -0.600925213 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + d = -0.600925213 + -1.166666667 d = -0.600925213 + -1.166666667 Combine like terms: -0.600925213 + -1.166666667 = -1.76759188 d = -1.76759188 Simplifying d = -1.76759188Solution
The solution to the problem is based on the solutions from the subproblems. d = {-0.565741454, -1.76759188}
| (800/2+61)-(81*3-5)=x | | X-6x=-11-14x | | 9x^2+11x+18=10x+8 | | 21/7+42/6 | | 9/10-3/5 | | w-3*3=16+2 | | (9x+4)(4x+8)=0 | | -3[-x+4]+6=-15 | | (100/2+60-8)-(60+5-82)=x | | 9=-4.8+c | | 1/2(8x-6) | | 5+0.5(6n+14)=3 | | 17-(4-6z)+4=4z | | x/5=32/40 | | (x-2)/(x+3)+(x+2)/(x-4) | | (3-2i)/(4+3i)=0 | | 3.8x+5.2-6.7=11.3 | | 7*7=n-11 | | d-2*2*2*2=20 | | (3-2i)+(4+3i)=0 | | 48=-4+16 | | 5x-5=8x | | 45-4-2y-4(y+7)=-4(1+3y)-[4-3(y+2)-2(2y-5)] | | (3-2i)-(4+3i)=0 | | (2x-12)+x+30=180 | | lx-1l=4 | | (3x+10)+(5x+18)=180 | | -4-4(y)=-4 | | 2[d+3(d-1)]=x | | 0-4(y)=-4 | | 3X^2=96+2x | | 4-4(y)=-4 |